Course Schedule of MST Program ,TIGP

Semester: Fall, 2009(98 學年度上學期)

Course(科目): Advanced Physical Chemistry (I)-高等物化(I) Time(時間): 9:1 0~12:00 am, Tuesday(T2T3T4) or 10:00~11:30 am, Tuesday, 10:00~11:30 am, Thursday(T3T4,R3R4) Room(教室): 311 IAMS 中研院原分所 R311(台大校園) NTHU coordinator(清大教師): 倪其焜 Course speakers(授課老師): Michitoshi Hayashi 林倫年、Chao-Ping Hsu 許昭萍、 Yen-Chu Hsu 許豔珠 Required(必修課), credit(學分): 3

Course No.(科號): TIGP727100

Date	lecturer	Date	lecturer
9/15 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/08 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
9/22 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/10 Thursday10:00~11:30	Prof. Yen-Chu Hsu
9/29 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/15 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
10/6 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/17 Thursday10:00~11:30	Prof. Yen-Chu Hsu
10/13 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/22 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
10/20 Tuesday 9:1 0~12:00	Prof. Michitoshi Hayashi	12/24 Thursday10:00~11:30	Prof. Yen-Chu Hsu
10/27 Tuesday 9:1 0~10:30	Prof. Chao-Ping Hsu	12/29 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
10/29 Thursday 9:1 0~10:30	Prof. Chao-Ping Hsu	12/31 Thursday10:00~11:30	Prof. Yen-Chu Hsu
11/03 Tuesday 9:1 0~12:00	Prof. Chao-Ping Hsu	1/5/2010 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
11/10 Tuesday 9:1 0~12:00	Prof. Chao-Ping Hsu	1/7/2010 Thursday10:00~11:30	Prof. Yen-Chu Hsu
11/17 Tuesday 9:1 0~12:00	Prof. Chao-Ping Hsu	1/12/2010 Tuesday 10:00~11:30	Prof. Yen-Chu Hsu
11/24 Tuesday 9:1 0~12:00	Prof. Chao-Ping Hsu	1/14/2010 Thursday10:00~11:30	Prof. Yen-Chu Hsu
12/1 Tuesday 9:1 0~12:00	Prof. Chao-Ping Hsu		

	Part 1 (Week 1-week6)	
Speaker	Prof. Michitoshi Hayashi	
-	林倫年教授	
	<the 3="" first="" weeks=""></the>	
	Quantum mechanical principles	
	\rightarrow Uncertainty principle and relations	
	\rightarrow The principle of superposition	
	The dynamics of microscopic systems	
	→Schrödinger equation	
	\rightarrow Wave function	
	→Operator algebra	
	\rightarrow Eigenvalues and eigenvectors	
	→Observables	
Class Outline	→Stationary states	
	\rightarrow The Virial Theorem	
	<the 3="" last="" weeks=""></the>	
	Approximations	
	\rightarrow Perturbation method	
	\rightarrow Variational principle	
	Simple applications	
	\rightarrow Harmonic oscillator	
	\rightarrow Diatomic systems	
	Introduction to many electron systems	
	\rightarrow Independent particle approximation	
	\rightarrow Correlation effects	
	rins course consists of two parts. Introduction of (1) the basic	
	principles of quantum mechanics and (2) the essentials of the	
	solving methods of Schrödinger equation and its applications to	
	simple and important systems.	
Introduction	The first 3 weeks, we will discuss the dynamics of microscopic	
	systems and quantum mechanical principles. The last 3 weeks, we	
	will see how quantum mechanics works for some of the simplest	
	systems including hydrogen atom, hydrogen molecules using	
	several approximation techniques.	
	Problem sets will be provided weekly to trace understanding of the	
	materials.	
Grading	The final grade will be determined by	
	Problem sets (60%)	
	Exam (40%)	
Textbook	Lecture Notes	
	Reference	
	Atkins' Physical Chemistry	

	Part 2 (Week 7-week12)	
Speaker	Prof. Chao-Ping Hsu	
	許昭萍教授	
Class Outline	Atomic structure and atomic spectra	
	(H atom, many-electron atoms, term symbols	
	and selection rules)	
	Molecular structure (The Born-Oppenheimer	
	Approximation, valance-bond theory,	
	molecular orbital theory.)	
Introduction		
	40% homeworks	
Grading	60% written exam	
Textbook	Atkin&DePaula, "Physical Chemistry"	

	Part 3 (Week 13-week18)	
Speaker	Prof. Yen-Chu Hsu	
	許豔珠教授	
Class Outline	1. Symmetry and symmetry classification	
	2. Group theory	
	3. Symmetry in Quantum Theory	
	4. Rotational spectroscopy: selection rules, line width and	
	stark effect.	
	5. Rotational spectroscopy and Astrophysics	
Introduction	This part will follow closely the textbook (chapter 12 and	
	section 1-8 of chapter 13). Additional handout will be given in	
	the classes.	
Grading	1. Homework (40%).	
	2. Attendance (25%).	
	3. Examination (35%).	
Textbook	Atkin's Physical Chemistry, 8 th edition(Oxford Univ., 2006)	